Note
Click here to download the full example code
An example plot of sliced.sir.SlicedInverseRegression
import numpy as np
import matplotlib.pyplot as plt
from sliced import SlicedInverseRegression
from sliced import datasets
X, y = datasets.make_cubic(random_state=123)
sir = SlicedInverseRegression()
X_sir = sir.fit_transform(X, y)
# estimate of the first dimension reducing directions
beta1_hat = sir.directions_[0, :]
# plot data projected onto the first direction
plt.scatter(X_sir[:, 0], y, c=y, cmap='viridis', linewidth=0.5, edgecolor='k')
plt.xlabel("$X\hat{\\beta_1}$")
plt.ylabel("y")
# annotation showing the direction found
beta_text = "$\\beta_1$ = " + "{0}".format([0.707, 0.707])
plt.annotate(beta_text, xy=(-2, 6.5))
beta1_hat_text = "$\hat{\\beta_1}$ = " + "{0}".format(
np.round(beta1_hat, 3).tolist()[:2])
plt.annotate(beta1_hat_text, xy=(-2, 7.5))
plt.show()
Total running time of the script: ( 0 minutes 0.030 seconds)