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Motivation

Complex systems are dynamic and consist of multiple correlated relations.

Social Networks: friendship, coworker-ship, mentorship, etc.
Social Media: Liking, replying to, and re-tweeting users.

International Relations: offering aid, verbal condemnation, military
conflict, and others.
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Network Data
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Dynamic Multilayer Networks

Multiple node-aligned graphs that co-evolve over time. Used to represent
multiple co-evolving relations (or layers).

= Example (ICEWS): Graphs measuring whether two countries had a
{verbal cooperation, material cooperation, verbal conflict, material

conflict} on a given month.
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Multiple Time-Varying Network Data

Dynamic Multilayer Networks:

A collection of n x n adjacency matrices Y collected over 1 <t < T

time periods for each layer 1 < k < K. Each Y has elements Yj;:

SS

{1, (i,j) are connected at time ¢ in layer k,
t fr—

0, otherwise.

Example:

Y,j-‘t =1 : country i and country j had a {verbal cooperation, material

cooperation, verbal conflict, material conflict} on the tth month.



Inference for Dynamic Multilayer Networks

Two main questions: T °

= Inferences about individual network time-series:

Forecasting future edges and graph properties, 7S ;
smoothing graph statistics, change-point detection

= Inferences about common structure: t=2
Community detection, graph similiarty across layers,
e.g., clustering

Challenges in dynamic multilayer network analysis: 0%
= Network heterogeneity
= High dimensionality
= Computational scalabiliity

= Proper uncertainty quantification




Previous Approaches

= A stochastic actor oriented model (Snijders et al., 2013).
Requires careful feature engineering and only quantifies local
structure.

= Multilinear tensor autoregression (Hoff, 2015).
Only developed for real-valued networks and very high-dimensional.

= A Bayesian nonparametric model (Durante et al., 2017).
Lacks interpretability and not scalable to networks with more
than a dozen nodes and time-points.



Latent Space Models for Networks (Hoff et al., 2002)

= Nodes are represented with latent positions in RY
X =(Xy,...,X,)T erm™

= Edges are conditionally independent given latent positions

Y; "¢ Bernoulli(g(X;, X))

Adjacency Matrix
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e

Statistical Inference



International Relations

Y,j-‘t =1 : country i and country j had a {verbal cooperation, material

cooperation, verbal conflict, material conflict} on the tth month.

Note: Popular (high degree) nodes vary by time and layer.

Verbal Conflict Material Conflict
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School Contact Networks

Y,j-‘t =1 : student / and student j were in contact on {Thursday, Friday}
during the tth time period.

Note: Layers contain a highly-correlated time-varying structure.

4:40 to 5:30

12:00 to 12:20

8:30 to 9:20

Thursday

Friday
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Our Contribution

An Eigenmodel for Dynamic Multilayer Networks

yi s Bernoulli( Put)

ijt

logit(Pf) = 0} , + &  + XiT A X

d
= 0he+ 8+ Z Akt Xip X}
h=1

= Nodes are assigned a scalar-valued sociality, varies by layer and time:
Skt = (Okts---,0h,) €R".
= Nodes are assigned latent vectors in RY, shared by layers but time-varying:
X = (X4, XD e R™
= A diagonal homophily matrix, varies by layers:

Ay = diag(Ay) € R

12



Components of the Decomposition

Generate 6;'“ it 1, X i N(0,2 k), and Ay = Iy:

XITAX,

P e £ -
Degree Heterogeneity

Transitivity (Clutrin)

O ¢+ Oj ¢+ X{ITAXL

Probability
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The Role of the Homophily Matrix (Ay)

Model: logit(PX,) = XiT diag(A) X} = Eh 1 )‘ththXth

ijt

= Homophily: Nodes with similar features form edges.

= Heterophily: Nodes with different features form edges.

14



The Role of the Homophily Matrix (Ay)

Model: logit(Pk,) = XiT diag(A) X = S50, AnX(p X,

= Homophily: Nodes with similar features form edges.
= Heterophily: Nodes with different features form edges.

Layer 1 Layer 2 Layer 4

A;=[1.0,1.0]" A, =[0.1,0.1]" As=[-0.1, —0.1]"

=" i vy | - . . iR R A Tha .
High Homophily Low Homophily High Heterophily Low Heterophily
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A State-Space Model for Dynamic Multilayer Networks

A network-valued state-space model (Sarkar and Moore, 2005; Sewell and

Chen, 2015):
;
®

O T

O+
O+

O+®
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A State-Space Model for Dynamic Multilayer Networks

A network-valued state-space model (Sarkar and Moore, 2005; Sewell and

Chen, 2015):
;
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Gaussian Random Walk
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A State-Space Model for Dynamic Multilayer Networks

A network-valued state-space model (Sarkar and Moore, 2005; Sewell and

Chen, 2015):
;
®
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A State-Space Model for Dynamic Multilayer Networks

A network-valued state-space model (Sarkar and Moore, 2005; Sewell and

Chen, 2015):
;
®

Gaussian Random Walk

O T

O+
O+

O+®

'U

riors

Social Trajectory: 0 1.7 = (0} 1s---0%s)

61 ~ NO,75), O~ N(Sj, q,05), 2<t<T.
Latent Trajectory: X| ;= (Xi,...,X)

X~ NO,7%lg),  Xi~NXI_,0%ly), 2<t<T.
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Remaining Priors

The remaining priors are

o A SN0, 021) for 1 < k< K,
" TzSQNF_l(aT(?’brg’)v

( )
n 7‘2 ~ 1"—1(37_2’ b7—2),
= g~ F'l(ng,dgz).

We chose values for the hyperparameters that made the priors
uninformative.

16



Parameter ldentifiability

)

log-odds matrix

Sufficient Conditions for Latent Space Identifiability

Vi " Bernoull (logit‘1 [%ﬂ + 1,00, + XtAkXtT} )
i
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Parameter ldentifiability

)

Vi " Bernoull (logit‘1 [%ﬂ + 1,00, + XtAkXtT} >
i

log-odds matrix

Sufficient Conditions for Latent Space Identifiability

Al.

A2.

A3.

Centering: J,X; = X;, where J, = I, — (1/n)1,17%, for
1<t<T.

Full Rank: rank(X;) =dfor1 <t< T.

Reference Layer: A, = I, , = diag(l,...,1,—1,...,—1) for
—— —
P q

at least one 1 < r < K.
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Parameter ldentifiability

)

Y-k-t "9 Bernoulli (Iogit_1 [5“1: + 1,,5,1 + XtAkXtT} >
ij

log-odds matrix

Sufficient Conditions for Latent Space Identifiability

Al. Centering: J,X; = X;, where J, = I, — (1/n)1,1}, for
1<t<T.

A2. Full Rank: rank(X;) =dfor 1 <t< T.

A3. Reference Layer: A, = I, 4, = diag(1,...,1,—1,...,—1) for
—— —
P q

at least one 1 < r < K.

AA4. Distinct Layers: For at least on layer k # r, rank(Ax) = d and
A A, has distinct diagonal elements, e.g., Ax # al, 4.




Parameter ldentifiability with a Pair of Distinct Layers

Suppose two sets of parameters {d1.k1.7, X1:7, A1:x}  and
{SlzK,l;T,-)El:T,[\l:K} satisfy conditions A1l — A4 with A, = /pyq
and A, = Iy, and their log-odds matrices are equal, then the
parameters are equal up to a signed permutation of the latent space.

That is, forall 1 < k< Kand 1 < t< T, we have that
Sk,t = 5k,t, /?t = XtMt7 Al< = M?AkMu

where M, = Pdiag(s), s € {£1}9, and Pis a d x d permutation matrix.

Remark: Most latent space models are only identifiable up to a rotation.



Enforcing ldentifiability

= A2 (full rank) and A4 (distinct layers):
Holds with probability 1 under our priors.

= A3 (reference layer):

Re-parameterize the reference layer as follows

Ah=2up—1, up i Bernoulli(p), h=1,...,d.

= A1l (centering):

Not enforced during inference, we center estimates upon
convergence.

19



Parameter ldentifiability without a Pair of Distinct Layers

Remove Assumption A4 from Proposition 1 and assume d < 3, then the
parameters are identifiable up to a indefinite orthogonal transformation.

Thatis, forall 1 < k< Kand 1 <t< T, we have that
Sk,r = 6k,t7 -)E't = XtMt, Ak = M?Ath

where M, € R¥*? satisfies M¢lp qM7 = Iy q.

Remark: When d > 3, M, satisfies My ¢ M} = I, .

20



The Indefinite Orthogonal Group and Community Detection

Example:

The set of matrices MILlMT = I 1 contains hyperbolic rotations:
cosh(6) sinh(0)
sinh(0) cosh(0)

6=1, KMeans ARI = 0.97, GMM ARI = 0.97 6=0.6, KMeans ARl = 0.75, GMM ARI = 0.97

Takeaway: When using the latent space for community detection, do
not assume spherical clusters.

21



Bayesian Inference

Posterior Inference: Given observed networks {Y7.7,..
want to infer the latent parameters

2 2 2 2
0= {61:K,1:T7 Xl:TaAl:K;T , O 77-570-6}
based on the posterior:

p(e | Y}:T? s aYﬁT) =

Posterior:
coherent point estimation

& uncertainty quantification

S YR we

22



Bayesian Inference

Posterior Inference: Given observed networks {Y} 1...., YK}, we
want to infer the latent parameters

2 2 2 2
0= {61:K,1:T7 Xl:TaAl:K;T , O 77-570-6}

based on the posterior:

PO Y ... YK = STy XHHHp xe@.

Posterior: t=1k=1i<j
coherent point estimation
& uncertainty quantification

Normalizing Constant Likelihood
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Bayesian Inference

Posterior Inference: Given observed networks {Y} 1...., YK}, we
want to infer the latent parameters

2 2 2 2
0= {61:K,1:T7 Xl:TaAl:K;T , O 77-570-6}
based on the posterior:

(0|Y1T7~--aY’1<;T):

Posterior:
coherent point estimation Normalizing Constant
& uncertainty quantification

t=1 k=1 i<j

Likelihood

Challenge: The posterior is analytically intractable and expensive to
sample from using MCMC even for small networks.

p(Y%:T"‘ YfT XHHHP XE@.

22



Variational Inference

- ) . . . 1 K
Solution: Approximate the intractable posterior p(6 | Y. ,..., Y1)
with a parametric distribution g(@;v) with estimable parameters v.

POIY . Y
»

 q(O;v) = argminKL(q(8;0) || o0 | Yir. ., YD)

(0™
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Variational Inference
- ) . . . 1 K
Solution: Approximate the intractable posterior p(6 | Y. ,..., Y1)
with a parametric distribution g(@;v) with estimable parameters v.
POIY . Y
]

 q(O;v) = argminKL(q(8;0) || p(0| Yir. ., YD)

(0™

New Challenge: Choose g(@;v) for an accurate approximation.

1. How should we factor q(8,v) =[], q(6;;v))?
2. What parametric form should each q(8;;v;) take?

23



How Should We Factor ¢(0;v)?

General Rule: Maintain the posterior's strongest dependencies.

24



How Should We Factor ¢(0;v)?

General Rule: Maintain the posterior’'s strongest dependencies.
Example:

Generate y; g No(w,>) for i=1,..., N with a known, highly-correlated,

Y. Place a Nay(po,X0) prior on p. Goal is to approximate p(p | y1.n, 2).
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How Should We Factor ¢(0;v)?

General Rule: Maintain the posterior’'s strongest dependencies.
Example:

Generate y; g No(w,>) for i=1,..., N with a known, highly-correlated,
Y. Place a Nay(po,X0) prior on p. Goal is to approximate p(p | y1.n, 2).

q(p;v) = Ni(jin,67) - Na(fi2,53)  or  No(fa, %)
——
Mean Field Full Rank

£ Analytic
= Mean Field
= Full Rank.

H2

24



A Structured Approximation of the Eigenmodel’s Posterior

Structured Variational Approximation

d K K n n
o(8:) = [H qum] [H quk)] [an@ﬂ)] [H o m]
h=1 i=1

k=2 k=1 i=1

x q(t%)a(0?)q(75)a(03).

Unlike previous approaches (Liu and Chen, 2021), we

= Maintain the latent variable's strong temporal dependence.

= Use optimal distributions under this factorization.

25



Optimizing the Variational Objective

Optimal distributions are computed by iterating the following updates:

Coordinate Ascent Variational Inference (CAVI)

Cycle through j € {1,..., m} until convergence:

log q(6;v)) =E_; [log p(0; | 0_;, Y1i.7,..., Y 1)] +c.

If the full conditionals are in the exponential family, then these updates
are available in closed-form.

Problem: The Eigenmodel does not have this property!

26



Restoring Conditional Conjugacy through Data Augmentation

Pélya-gamma augmentation (Polson et al., 2013): For each dyad, we
introduce P6lya-gamma latent variables w, < PG(0,1).

27



Restoring Conditional Conjugacy through Data Augmentation

Pélya-gamma augmentation (Polson et al., 2013): For each dyad, we
introduce P6lya-gamma latent variables w, < PG(0,1).

The joint distribution is now

p(Y%:T7 e aY{(:Tv evw) = p(Y%:T7 te 7Y€<:T | 0(0) X p(G)p(w)
——

Augmented Likelihood Priors

Note: Marginalizing over w, we recover the original joint distribution.
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Restoring Conditional Conjugacy through Data Augmentation

Pélya-gamma augmentation (Polson et al., 2013): For each dyad, we
introduce P6lya-gamma latent variables w, < PG(0,1).

The joint distribution is now

p(Y%:F ce ’Yi(:Tv 07 w) - p(Y%:Tv te 7Y{<:T | 07 w) X p(e)p(w)
—

Augmented Likelihood Priors

K T
oc [T TTTT expizhe viie — wite () /2} % p(8)p(w),

k=1t=1 i<j

Priors

Quaderatic Likelihood
where z, = Y5, —1/2 and ¢, = 6] , + (5{(’75 + XITAXY

Note: Marginalizing over w, we recover the original joint distribution.
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Variational Kalman Smoothing

The optimal latent (social) trajectories’ variational distributions are
Gaussian state-space models, e.g.,

T T
log g(X1.7) = log h(X}) + ) " log h(X} | Xi_;) + Y logh(z | X}) + ¢,
t=2 t=1

where
log h(X{) = Eq(;z) [log N(X} | 0,7%)]
log h(X; | Xi1) = Eqio2) [log N(X} | Xi-1,0%)]

log h(z; | X}) = E_gxi . Z Z log N(2k, | whe(0l: + 6 A XTAXD), why)
k=1 j#i

We then derive a novel Kalman smoothing type algorithm that calculates
the moments of this variational distribution in closed-form.

28



CAVI for the Eigenmodel for Dynamic Multilayer Networks

Iterate the following steps until convergence:

1. Update each q(w;}t) = PG(1, k).

ijt
2. Update
q(8i ;.7) : a Gaussian state space model for i € {1,...,n} and
ked{l,...,K},

a(r3) = T(3,2/2, B,2/2),
a(03) = T (c,2/2,d,2/2),
using a variational Kalman smoother.
3. Update

q(Xi.7) : a Gaussian state space model for i € {1,...,n},
q(7?) =T1(3,2/2,b,2/2),
q(0?) =I"1(¢,2/2,d,2/2),
using a variational Kalman smoother.
4. Update g(A1p) = pifjlh:l} (1— p,\lh)]lp‘lhzfl} for he {1,...,d}.
5. Update g(Ax) = N(px,,Xx,) for ke {2,..., K}

29



Simulation Study

We conducted simulations to see how estimation scaled with network size.
= Simulation 1: An increase in nodes
(n, K, T) € {50,100, 200,500, 1000} x {5} x {10}.
= Simulation 2: An increase in layers
(n, K, T) € {100} x {5,10,20} x {10}.
= Simulation 3: An increase in time points

(n, K, T) € {100} x {5} x {10,50,100}.

Estimation Error: The relative Frobenius norm ||A — A||2/||A|/2.

30



Estimation Error

Sim 1
Relative Error

Sim 2

Relative Error

Sim 3
Relative Error

X7

AVEYS

K
Piit

L=

T{.T{_?

50 100 200 500 1000

Number of Nodes

50 100 200 500 1000

Number of Nodes

50 100 200 500 1000

Number of Nodes

50 100 200 500 1000
Number of Nodes

e

5 10 2
Number of Layers

?zo

5 10
Number of Layers

5 10 20
Number of Layers

5 10 20
Number of Layers

- =

e

proba rel

10 50 100
Number of Time Steps

10 50 100
Number of Time Steps

10 50 100
Number of Time Steps

10 50 100
Number of Time Steps
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Predictive Performance

AUC for in-sample and out-of-sample dyads based on our model's
predictions. We removed 20% of the dyads randomly from each layer and

time-step.
I In-Sample [ Out-of-Sample
K=5T=10 T=10,n =100 K=5,n=100
0.96
0.94
o
20.92
0.90
0.88
0.86
50 100 200 500 1000 5 10 20 10 50 100
Number of Nodes Number of Layers Number of Time Steps
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International Relation Networks, 2009-2017

Eight years during the Obama administration of monthly relational data
taken from ICEWS (Boschee et al., 2015).

] YZ =1 : country i and country j had a {verbal cooperation, material
cooperation, verbal conflict, material conflict} on the tth month.

= The verbal conflict relation was taken as the reference layer because
it had the highest density.

= n =100 countries, T = 96 months, K = 4 relations.

= Estimated a model with d = 2 for visualization.
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Social Trajectories Reveal Global Events

Material Conflict

21 United States
1 4
Iraq
04 RYERa
-
g Libya
g —21 Ukiaine
]

2009 2010 2011 2012 2013 2014 2015 2016 2017
Year

Reveals global conflicts: Arab Spring in Libya (2011), Rise of ISIL in
Syria (2013 — present), The American-led intervention in Iraq (2014).

Does not indicate the Crimean Crisis between Russia and Ukraine (2014).
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Homophily Varies between Cooperation and Conflict

Conflict layers utilize the latent space more when predicting a link:

Verbal Cooperation

Material Cooperation

Verbal Conflict

Material Conflict

Verbal Cooperation

Material Cooperation

Verbal Conflict

Material Conflict

e
0.980 (0.969, 0.992)
to
1.106 (1.095,1.116)
10l
1.096 (1.086, 1.107) |
18]
h=2
e
1.006(0.994, 10100 |
o]
1.149 (1138, 1.160) |
104
1.090 (1078, 1.102)
fol
02 04 06 08 10 12

Homophily Parameter (Axp)
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Latent Positions Correlate wit

The latent space reflects a nation
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Latent Space Dynamics Reveal Regional Events

Dynamics reflect the 2014 Crimean Crisis between Ukraine and Russia:

<latent space movie>

37


https://joshloyal.github.io/assets/gif/russia_ukraine.gif

Conclusion

= The Eigenmodel for Dynamic Multilayer Networks is a tractable
model for multiple time-varying network data.

= Unlike previous methods, its parameters are interpretable and
identifiable.

= A novel variational inference algorithm provides meaningful
uncertainty quantification and scales to large networks.

= Applications in international relations, epidemiology, and other fields.
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Other Projects

1. Time-varying community structure in dynamic networks.

= A new Bayesian nonparametric prior that infers discrete changes
in community structure in dynamic networks.
t=3 t=4
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Other Projects

1. Time-varying community structure in dynamic networks.

= A new Bayesian nonparametric prior that infers discrete changes
in community structure in dynamic networks.
t=3 t=4

2. Local variable importance for random forests.

= Adapted the random forest kernel to local structures using a
new linear combination splitting rule.
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Other Projects

3. Statistical network analysis for the COVID-19 pandemic.

= Combined statistical network models with network
compartmental models to study disease progression.
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Other Projects

3. Statistical network analysis for the COVID-19 pandemic.

= Combined statistical network models with network
compartmental models to study disease progression.

4. Bayesian modeling averaging for dynamic LSMs.

= Infer p(d| Yi.7) using a state-space model on the Steifel
manifold with sparsity inducing priors.
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Future Directions

Statistical models for complex and higher-order networks.

= Testing for layerwise correlation in multilayer networks using network
random-effects.

= Community detection in dynamic multilayer networks.
Scalable Bayesian inference for network data.

= Extending modern scalable Baysian computation methods for iid
data to network data, e.g., Bayesian coresets, stochastic gradient
MCMC, variational auto-encoders, and others.

41



Future Directions

Quantifying homophily in networks.

= Networks often contain node-level and edge-level covariates.

= Combine machine learning models (e.g., random forests) to better
understand how these covariates contribute to network formation.

Regression with network-valued covariates

= Regression of a univariate response on network-valued covariates:

i =g( A noi=1,...n.
yi=8( A )+e
network

Use sufficient dimension reduction to infer the network’s contribution.
Applied scientific problems
= At UIUC, | collaborated with scientists from Sandia National Laboratories
and the Environmental Science department.

= Leveraging my expertise in Bayesian inference and computational

statistics, | hope to develop new interdisciplinary collaborations.
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Extensions and Future Directions

Simple Extensions:
= Incorporation of dyad-wise covariates {Z,Jt} through a linear term
logit(Pf,) = BT Zf, + 01, + 0L, + X{TAXI.
= Extension to directed networks
logit(Pk,) = 01 + 7L, + UiT AV
Future Research:

= Allow inference on larger networks through stochastic optimization.

= Explore non-stationary state-space models.

= Extend the VB algorithm beyond binary or real-valued dyads, e.g.,
count data.
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Correcting for Centering ldentifiability

To satisfy Al (centering), note that the likelihood is invariant to
translations:

5;@ + 5{@ + XQTAkXJ; = 5L,t + 5{(,t + (Xlt —c+ C)TAk(X{‘ —c+c),
=0 + 07, + XiTAXY,
where X1 = X| —c and 6] , = 0], + X" Ay + cTAe/2.

Therefore, given an estimate of the approximite posterior, we can
estimate the centered solutions X! and & with ¢ = (1/n) >"7 | Xi.
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The Role of the Homophily Matrix (Ay)

Toy Model: For i=1,...,n, assign a binary latent feature X} € {—1,1}.

Deterministically form an edge as follows:

Y = 1{AXX, > 0},
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The Role of the Homophily Matrix (Ay)

Toy Model: Y% = 1{\X\X} > 0}.

U

When g > 0, the relationship is homophilic (same features connect):

MXEXZ <0

Xl = X2 =1
0‘..: .............................................. ;"
A A
% %
X . o
<
< - > X
o
Xt =-1]. XE=1
O e S
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The Role of the Homophily Matrix (Ay)

Toy Model: Y% = 1{\X\X} > 0}.

U

When A < 0, the relationship is heterophilic (opposites connect):

MXEX2 > 0

Xi=— Xi=1
- B
fr\/ué \/
x ! fos
B Fo¥
£y %%
< 5 i S
X =1 X3 =1

AXEXE>0
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2014 Crimean Crisis

--=- Verbal Cooperation

-~ - L X .
'/; ‘‘‘‘‘ . Material Cooperation

B PP P / Q --== Verbal Conflict

0.8 tepeaea s A . --=- Material Conflict
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0.2

2009 2010 2011 2012 2013 2014 2015 2016 2017
Year

The estimated link probability between Russia and Ukraine increases
dramatically around the Crimean Crisis.
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School Contact Networks

Two days of contact data collected at a primary school in France (Stehlé
et al., 2011).

. Y,’fjt = 1 : individual i and individual j had a at least one interaction
(< 5 ft) lasting more than 20 seconds during the tth 20 minute
interval on {Thursday, Friday}.

= Thursday is taken as the reference layer.

= n = 242 individuals, T = 24 time steps, K = 2 days.
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Estimating the Epidemiological Branching Factor

Often a disease’s epidemic propensity is summarized by the epidemic
branching factor

- 27:1 di2/”
27:1 di/n .
In network-based SIR and SEIR models, the basic reproduction number
T
Ry = —1
0 T+’Y (’i )a

where 7 and v are infection and recovery rates, respectively.

53



Branching Factor Estimates

Estimated with 250 samples from the

Epidemic Branching Factor

Thursday

approximate posterior.

Friday
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Time

Captures spikes during the two breaks (around 10:30 am and 3:30 pm)

and lu

nch (12:00 - 1:00 pm).
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Branching Factor Estimates

Estimated with 250 samples from the approximate posterior.

Thursday Friday

N - - = - N
S ] S S o S

Epidemic Branching Factor
B
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Captures spikes during the two breaks (around 10:30 am and 3:30 pm)
and lunch (12:00 - 1:00 pm).
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Heterogeneous Contact Patterns

The latent space reveals heterogeneous connectivity patterns between
classrooms.

Thursday from 10:40 to 11:00 Friday from 10:40 to 11:00

© 1A - 24+ 3A -+ 4A - 5A  + Teachers < 1A - 24 - 3A - 4A - 5A  « Teachers
1B 2B 3B 4B 5B 1B 2B 3B 4B 5B
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