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Network Data

A symmetric n × n adjacency matrix Y with entries {Yij : 1 ≤ i, j ≤ n}
that describe the relations between pairs of entities, or nodes. The edge
variables Yij can be binary (0/1) or real-valued, that is, weighted.

International Trade of Bananas in 20181

Yij = amount of trade in bananas between nation i or nation j in 2018.
1Data taken from the BACI database curated by the CEPII.
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The Statistical Problem (Edge-Variable Regression)

Goal: Understand the relationship between the edge-variables Yij and
dyadic covariates {xij ∈ Rp : 1 ≤ i, j ≤ n} by modeling E[Yij | xij], e.g.,

The Gravity Model of Trade (Tinbergen, 1962; Anderson, 1979):

log(E[Yij | xij]) = β1[log(GDPi) + log(GDPj)] + β2 log(Distij) +

p∑
k=3

βk xij,k.

Issues: Traditional conditional independence assumptions always
breakdown due to strong network dependencies such as degree,
transitivity, and clustering effects.

Solution: Introduce latent variables in the form of latent variable
network models that capture residual network structure.
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Latent Space Models (LSMs) for Networks (Hoff et al., 2002)

• Nodes are represented with latent positions in Rd

U = (u1 , . . . , un)
⊤ ∈ Rn×d.

• Edges are conditionally independent given latent positions

Yij | U ind.∼ Q(s(ui, uj)).

• Example: Yij | U ind.∼ Bernoulli(s(ui, uj)):
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How Do We Choose the Dimension of the Latent Space?

Model complexity is controlled by d =⇒ a bias-variance trade-off.

As d increases, the model can capture more network structure (lower
bias), but results in more estimable parameters (higher variance).
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Previous Approaches

• Information Criterion: AIC, BIC, DIC, WAIC, etc.
Computationally intensive. No theoretical guarantees or
post-selection uncertainty quantification.

• Data Splitting: K-fold cross-validation (Hoff, 2005; Li et al., 2020).
Computationally intensive. Restricted theoretical guarantees (no
covariates). No post-selection uncertainty quantification.

• Bayesian Priors (Durante and Dunson, 2014; Guhaniyogi and
Rodriguez, 2020; Guha and Rodriguez, 2021; Gwee et al., 2022):
No theoretical guarantees. Penalization of increasing model
complexity only holds in prior expectation. Does this penalization
penetrate through to the posterior? How to set hyperparameters?
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Outline of Contributions

A Bayesian LSM with theoretical grounded dimension selection for many
edge-variable types (binary, ordinal, non-negative continous).

1. Generalized Linear Network Eigenmodels (GLNEMs)
2. The Non-Homogeneous Spike-and-Slab Indian Buffet Process
3. Theoretical Results on Dimension Selection
4. Simulation Study
5. Application to the International Banana Trade Network
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Generalized Linear Network Eigenmodels (GLNEMs)

Generalized Linear Network Eigenmodels (Systematic Component)

For 1 ≤ i ≤ j ≤ n and some strictly increasing link function g,

g(E[Yij | xij]) = β
⊤xij +

[
UΛU⊤]

ij = β
⊤xij + u⊤

i Λuj.

• Covariate effects: β ∈ Rp.
• Latent positions: U ∈ V̄d,n = {U ∈ Rn×d : U⊤U = Id, U⊤1n = 0d}.

V̄d,n is the set of centered semi-orthogonal matrices.
• Assortativity matrix: Λ = diag(λ1, . . . , λd) ∈ Rd×d.
• βk and λh quantify the amount of assortative (or disassortativity)

associated with the k-th dyadic covariate and h-th latent feature.
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Generalized Linear Network Eigenmodels (GLNEMs)

Generalized Linear Network Eigenmodels (Random Component)

For 1 ≤ i ≤ j ≤ n,

Yij = Yji | xij
ind.∼ Q

{
· | g−1

(
β⊤xij + [UΛU⊤]ij

)
, ϕ
}
,

where Q(· | µ, ϕ) is a member of the exponential dispersion family
with mean µ and dispersion factor ϕ. That is, Yij has a density

q(yij; θij, ϕ) = exp
{yij θij − b(θij)

ϕ
+ k(yij, ϕ)

}
,

where θij is the natural parameter and b and k are known functions,
such that, g(b′(θij)) = g(E[Yij | xij]) = β⊤xij + u⊤

i Λuj.

Note: GLNEMs allows for non-canonical link functions and dispersion.
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Dimension Selection Through Sparsity

Assume under the true model:

g(E[Yij | xij]) = β
⊤
0 xij + [U0Λ0U⊤

0 ]ij, with

β0 ∈ Rp, U0 ∈ V̄d0,n, Λ0 = diag(λ0) ∈ Rd0×d0 with ∥Λ0∥0 = d0.

We can embed this model in a higher dimensional model with d ≥ d0.

Let U =
[
U0 U1

]
∈ V̄d,n and Λ = diag(λ0, 0(d−d0)), then

UΛU⊤ =
[
U0 U1

] [Λ0 0

0 0

][
U⊤

0

U⊤
1

]
= U0Λ0U⊤

0 .

Note: Likelihood is invariant to column permutations.
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Prior Structure for Bayesian Inference

Idea: Take a Bayesian approach and construct a prior that induces
posterior zeros in Λ. Two remaining challenges:

1. Λ ∼ Π(Λ):
What prior induces an ordering constraint and posterior zeros?

2. U ∼ Π(U):
What is an appropriate prior on V̄d,n that allows for computationally
efficient inference for a variety of GLNEMs?
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A Spike-and-Slab Indian Buffet Process (SS-IBP) Prior

Propose the following prior for a collection of random variables {ηh}d
h=1.

Similar priors in Ročková and George (2016) and Ohn and Kim (2022).

The Non-Homogeneous SS-IBP Truncated at d:
SS-IBPd(α, κ,Pspike,Pslab)

ηh | θh
ind.∼ θh Pslab + (1− θh)Pspike, θh =

h∏
ℓ=1

νℓ, h = 1, . . . , d,

ν1
ind.∼ Beta(α, κ+ 1), νℓ

iid∼ Beta(α, 1), ℓ = 2, . . . , d,

where α > 0 and κ ≥ 0. Forces θ1 > θ2 > · · · > θd.

α, κ controls size of E[θ1] = α/(α+ κ+ 1).
α controls rate of shrinkage:

E[θh] = E[θ1]× [α/(α+ 1)]
h−1

.
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Stochastic Ordering Under the SS-IBPd(α, κ,Pspike,Pslab)

Ordering of {θh}d
h=1 induces a stochastic ordering of {ηh}d

h=1.

Proposition 1

For ϵ > 0 and fixed η0 ∈ R, let Bϵ(η0) = {η : |η− η0| ≤ ϵ} denote
the ϵ-ball centered at η0. Under the SS-IBPd(α, κ,Pspike,Pslab), if

Pslab(Bϵ(η0)) < Pspike(Bϵ(η0)),

then
P(|ηh − η0| ≤ ϵ) < P(|ηh+1 − η0| ≤ ϵ).

Remark: Set η0 = 0, then |ηh+1| is stochastically less than |ηh|:

P(|η1| ≤ ϵ) < P(|η2| ≤ ϵ) < · · · < P(|ηd| ≤ ϵ).
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An SS-IBP Prior for Λ in GLNEMs

We place a non-homogeneous spike-and-slab IBP prior on Λ:

(λ1, . . . , λd) ∼ SS-IBPd(α, κ,Pspike,Pslab) with
Pspike = δ0, Pslab = Laplace(b).

Corollary 1. For any ϵ > 0, P(|λh| ≤ ϵ) < P(|λh+1| ≤ ϵ).

Note: In practice, we represent this process as an exponential scale
mixture (Park and Casella, 2008) with binary indicator variables Z1, . . . ,Zd.
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Theoretical Results on Dimension Selection

Assume Y is drawn from a GLNEM with true latent space dimension d0

and true parameters {β0,U0,Λ0}, i.e.,

Yij = Yji
ind.∼ Q

{
· | g−1

(
β⊤
0 xij +

[
U0Λ0U⊤

0

]
ij ,
)
, ϕ
}
, 1 ≤ i ≤ j ≤ n

β0 ∈ Rp, U0 ∈ V̄d0,n, Λ0 ∈ Rd0×d0 with ∥Λ0∥0 = d0.

Let E(n)
0 denote the expectation under this model.

Setup: Since d0 often grows with n, we allow d → ∞ in the SS-IBPd
prior with the hope that the posterior P(∥Λ∥0 | Y) concentrates near d0.

Question: Any theoretical guarantee that the posterior will not overfit?
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Some Assumptions

A1. (Growth of d with n) d = ⌈nγ⌉ for some γ ∈ (0, 1],
A2. (Growth of d0) d0 = o(log d),
A3. (Bounded scale parameter) b = O(d),
A4. (Bounded Λ0) ∥Λ0∥∞ ≤ Kλ for some Kλ > 0,
A5. (Bounded latent space) max1≤i≤n∥u0,i∥2 ≤ Ku for some Ku > 0,
A6. (Bounded covariate effects) ∥β∥2 ≤ Kβ for some Kβ > 0,
A7. (Bounded covariates) max1≤i≤j≤n∥xij∥2 ≤ Kx for some Kx > 0,
A8. (Bounded variance) For any compact subset K ⊂ Θ, there exists

positive constants Kb,1,Kb,2 such that
Kb,1 ≤ infθ∈K b′′(θ) ≤ supθ∈K b′′(θ) ≤ Kb,2,

A9. (Inverse link has a bounded derivative) sup{η:|η|≤M}(g−1)′(η) ≤ Kg
for some Kg > 0.

Note: The proof of the following theorem is based on machinery
developed in Goshal and van der Vaart (2007) and Jeong and Ghoshal
(2021) for posterior concentration in sparse generalized linear models.
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The Posterior Concentrates on Low Dimensions on Average

Theorem 1

Assume Y comes from a GLNEM with non-zero latent space dimen-
sion d0 and true parameters {β0,Λ0,U0} such that ∥Λ0∥0 = d0.
Assume the following prior: λ ∼ SS-IBPd(1/d, d1+δ,Pspike,Pslab)

for δ > 0, Pspike = δ0, Pslab = Laplace(b) for b ≥ 1, β ∼
N(0p, σ2

βIp), and U ∈ V̄d,n with prior probability one.

If (A1) - (A9) hold, then

lim
n→∞

E(n)
0 Π

(
∥Λ∥0 > C d0 | Y

)
= 0,

for some C > 0 that only depends on δ and Kλ.
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Estimation

Approximate the posterior with samples obtained using Markov Chain
Monte Carlo (MCMC).

Propose a Metropolis-within-Gibbs sampler that alternates between
sampling

1. ψ = {β,Λ,U, ϕ, θ1:d},
2. The dimension indicators Z1:d = (Z1, . . . ,Zd) ∈ {0, 1}d.

ψ’s high-dimensionalty motivates using a gradient-based sampler.

Challenge: The requirement that U lie in V̄d,n poses a challenge for
naive gradient updates.

Solution: We introduced a new differentiable parameter expansion
strategy based on the QR decomposition that has full support on V̄d,n.
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Simulation Study: Dimension Selection

• Compared the SS-IBP to traditional methods for dimension selection.

• Competitors estimated a sequence of GLNEMs with a non-shrinkage
prior for Λ and selected the dimension according to

• Information Criterion: AIC, BIC, DIC, and WAIC.
• Data-Splitting: K-fold cross-validation (K = 5).

• All models estimated using Metropolis-within-Gibbs or Hamiltonian
Monte Carlo with 5,000 samples after 5,000 iterations of burn-in.
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Simulation Study: Dimension Selection (Canonical Link)

True dimension d0 = 3. Cells display percentages out of 50 repetitions.
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Simulation Study: Dimension Selection (Non-canonical Link)

True dimension d0 = 3. Cells display percentages out of 50 repetitions.
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International Trade of Bananas

A network of the international trade of bananas in 2018.1

• Yij: the amount of trade of bananas in thousands of U.S. Dollars
between nation i and nation j in 2018.

• Five dyadic covariates:
– log(GDPi) + log(GDPj)

– log(Distanceij)

– CommLangij
– Borderij
– TradeAgreementij

• n = 75 countries, p = 5 covariates.

1Data taken from the BACI database maintained by the CEPII:
http://www.cepii.fr/CEPII/en/bdd_modele/bdd_modele_item.asp?id=37
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A Tweedie GLNEM for Non-Negative Continous Networks

Systematic Component: A Gravity Model with Latent Network Effects

log(E[Yij | xij]) = β1[log(GDPi)+log(GDPj)]+β2 log(Distij)+
5∑

k=3

βk xij,k+u⊤
i Λuj.

Random Component: The Tweedie Distribution (Jørgensen, 1987)

Compound Poisson-gamma: “Total trade is the sum of individual trades.”

Yij =

{∑Nij
t=1 Zij,t Nij > 0

0 Nij = 0.

Nij ∼ Poisson
(

µ2−ξ
ij

ϕ(2− ξ)

)
, Zij,t

ind.∼ Gamma
(
2− ξ

ξ − 1
,

µξ−1
ij

ϕ(ξ − 1)

)
.

Proposed as a distribution for trade by Barabesi et al. (2016).
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Covariate Effects

All covariates are significant and the sign of the coefficients for
log(GDPi) + log(GDPj) and log(Distij) agree with economic theory.
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Residual Network Structure

The dimension of the latent space is uncertain:
P(d0 = 5 | Y) = 0.39, P(d0 = 6 | Y) = 0.40, P(d0 = 7 | Y) = 0.17.

24



The Latent Space Reveals Bipartite Structure
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Conclusion

• Developed a theoretically supported Bayesian approach to dimension
selection for a general class of network models we called GLNEMs.

• Demonstrated that the SS-IBPd(α, κ,Pspike,Pslab) prior adapts to d0

when used as a prior in a GLNEM.

• Scalable inference for large networks is a challange (currently only
tractable for a few hundred nodes).

• Applications to directed networks is an open problem:

UΛU⊤ −→ USV⊤,

U ∈ V̄d,n, V ∈ V̄d,n, S = diag(s1, . . . , sd) ⪰ 0.

• Preprint on website:
https://joshloyal.github.io/publications
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Parameter Identifiability and Marginal Effect Interpretation

Define the node-averaged covariate matrix
X̄ = (1/n)

∑n
j=1(xij, . . . , xnj)⊤ = (x̄1, . . . , x̄n)⊤.

Proposition 2

Assume Y is drawn from a GLNEM with parameters {β,U,Λ, ϕ}
such that U ∈ V̄d,n and rank(X̄) = p, then β is identifiable.

Remark: The sum-to-zero constraint on U’s columns allows us to
interpret the βk’s as marginal effects since

n−1
n∑

j=1

g(E[Yij | xij]) = β
⊤x̄i,

which are not conditioned on keeping the latent positions ui fixed.
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