
The Walmart Sales Project
• Goal: Forecast the weekly sales for 99 departments at 45 

Walmart stores located in different regions.


• That is 4,455 different time series! However, notice that time 
series within the same department have similar patterns:

Department 16Department 1
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What is a Time Series

Date y

2012 123

2013 39

2014 78

2015 110

y = (y1, y2, …, yT) = (123,39,78,110)
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Frequency of a Time Series

• Frequency: the number of observations before the 
seasonal pattern repeats. In physics and engineering this 
is the period.

Data Frequency

Annual 1

Quarterly 4

Monthly 12

Weekly 52

• Caveat: There are not 52 weeks in a year, but 365.25/7 = 
52.18 on average.
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Working with Time Series

> y <- ts(c(123,39,78,110), start=2012, frequency=1) 

Time Series: 
Start = 1  
End = 4  
Frequency = 1  
[1] 123  39  78 110

!4

• Load in R as a ts object



Working with Multiple Time Series
Notation
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• Assume we have m different times series of length T, e.g. 
weekly time series per store (within a department). Form a 
matrix Y containing each time-series as follows:

ith time series:

Value of each time series 
at time t.
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Working with Multiple Time Series
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library(tidyverse) 

> dept_tbl <- all_stores %>% 
>    filter(Dept == num_dept) %>% 
>    select('Date', 'Store', 'Weekly_Sales') %>% 
>    spread(Store, Weekly_Sales) 

> store_one_ts <- ts(dept_tbl[, 2], frequency = 52)

# A tibble: 143 x 46 
   Date          `1`    `2`    `3`    `4`    `5`    `6`   `7`    `8`    `9`   `10`   `11`   `12`   `13`   `14` 
   <date>      <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl> <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl> 
 1 2010-02-05 10218.  9675.  3702.  7438.  4546. 11819. 2774.  2956.  3860. 25694.  5894.  4566.  3333. 10433. 
 2 2010-02-12 11874.  9988.  4451.  8881.  6757. 11119. 4072.  4953.  3341. 24556.  6933.  3859.  4341  16731. 
 3 2010-02-19 13856. 11496.  6473. 10693.  5245. 18669. 3734.  5912.  6438. 33322.  9789.  6936.  4882. 11945. 
 4 2010-02-26 12881. 12558.  6322. 11943.  5150. 16651. 5188.  5946.  7241. 27774. 12764.  5895.  6392.  8287. 
 5 2010-03-05 17130. 21957.  7769. 15409.  6922. 30437. 5025.  8506.  9652. 35228. 15792.  8287.  8843.  8047. 
 6 2010-03-12 23767. 25827. 14296. 16169.  9407. 38650. 4289. 12776. 10164. 34864. 18317.  7352. 11771. 18217. 
 7 2010-03-19 41742. 45311. 14103. 23152. 14971. 51103. 6680. 17947. 17654. 48984. 29762. 10249. 15575. 23750. 
 8 2010-03-26 26680. 22084. 11458. 22741.  9350. 37527. 5238. 12889. 15085. 49448. 19302. 12934. 18668. 39182. 
 9 2010-04-02 46061. 48042. 15256. 35582. 14933. 60800. 7798. 26715. 28892. 47481. 29953. 12760. 19276. 39508. 
10 2010-04-09 52977. 58887. 17276. 38717. 15053. 56726. 6077. 34847. 23307. 53134. 30274. 13026. 18038. 61478. 
# ... with 133 more rows, and 31 more variables: `15` <dbl>, `16` <dbl>, `17` <dbl>, `18` <dbl>, `19` <dbl>, …

• Recommendation: Loop over departments and construct the 
matrix Y. You can then model column by column or try to 
combine information across columns, i.e. stores.



Introduction to Forecasting
• Forecasting: the prediction of data at future times 

using observations collected in the past.


• Forecast horizon: How many time steps in the future a 
model will predict. I denote this value by h in the 
example code.
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Time Series Patterns

• Trend: A long-term increase or decrease in the data. 
Does not have to be linear!


• Seasonal: When a time series is affected by seasonal 
factors such as the time of the year or day of the week. 
Seasonality is always of a fixed and known frequency.


• Cyclic: When a time series exhibits rises and falls that 
are not of a fixed frequency.


• Random: Everything else after the Trend/Seasonal/
Cyclic nature of the times series is removed.
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Time Series Patterns
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Department 16Department 1

Time Series Patterns



How to Evaluate a Forecast
• K-fold cross-validation does not work. Why?

• Instead use training sets that occur prior to the test data. 

Training sets are grown until they contain all of the data.

• This respects the dependency structure of the time 

series.
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Baseline Forecasting Methods

̂yT+h|T = yT

Naive 
• Predict all future forecasts to be the value of the last 

observation:

̂yT+h|T = yT+h−m(k+1)

library(forecast) 
> naive(y, h) 

library(forecast) 
> snaive(y, h) 

Seasonal Naive 
• Predict all future forecasts to be equal to the last 

observed value from the same season of the year 
(e.g. the same week of the previous year)
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Baseline Forecasting Methods
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Time Series Regression Models

• Through clever feature engineering many 
machine learning models can learn time series 
patterns.


• How do we model Trend?


• How do we model Seasonality?
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Time Series Regression Models
Modeling Trend

• Include t = 1, … , T as a predictor to the 

model. For linear regression:

yt = β0 + β1t + ϵt

library(forecast) 
> f_tslm <- tslm(y ~ trend) 
> forecast(f_tslm, h) 

• Can include higher order terms (t2, t3, …) to 
model non-linear trends.


• Caveat: Does not work for tree based methods. 
Why?
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Time Series Regression Models
Modeling Seasonality

• Include seasonal dummy variables, e.g. for 

quarterly data the categorical variable has four 
levels. One for each quarter.

yt = β0 + β1d1,t + β2d2,t + β3d3,t + ϵt

Trend + Seasonality

• Of course you can use both:

library(forecast) 
> f_tslm <- tslm(y ~ season) 
> forecast(f_tslm, h) 

yt = β0 + β1t + β2d1,t + β3d2,t + β4d3,t + ϵt
library(forecast) 
> f_tslm <- tslm(y ~ trend + season) 
> forecast(f_tslm, h) 
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Time Series Regression Models
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Time Series Regression Models
Harmonic Regression (Fourier Terms) for Seasonality

• Use Fourier terms as features. Alternative to seasonal 

dummy variables. Useful if there are too many categories. 
If m is the seasonal period, then the predictors are:

x1,t = sin ( 2πt
m ), x2,t = cos ( 2πt

m ) x3,t = sin ( 4πt
m ), x4,t = cos ( 4πt

m ), …

library(forecast) 

> f_tslm <- tslm(y ~ trend + fourier(y, K = 4)) 
> forecast(f_tslm, newdata = fourier(y, K = 4, h)) 

• What happens when we have m/2 terms?
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Time Series Regression Models
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Time Series Decomposition
• Idea: Use smoothing functions (splines, local regression) to 

decompose a time series into a Seasonal, Trend, and 
Random component.

yt = f(St, Tt, Rt) = St + Tt + Rt
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• Note: Sometimes the decomposition is multiplicative, e.g. 
magnitude of seasonality or variation in the series increases 
with the trend. In this case take a log transform of y.

Time Series Decomposition

yt = St × Tt × Rt ⟹ log(yt) = log(St) + log(Tt) + log(Rt)

• Decompositions in-between multiplicative and additive 
can be modeled by applying a Box-Cox transformation.
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STL: Seasonal Trend decomposition using LOESS

̂St
k

Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. J. (1990). STL: A seasonal-trend 
decomposition procedure based on loess. Journal of Official Statistics, 6(1), 3–73. http://www.jos.nu/
Articles/abstract.asp?article=613
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STL: Seasonal Trend decomposition using LOESS

library(forecast) 
library(fpp2) 

stl(fpp2::elecequip, t.window=13, s.window=7) 
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STL: Seasonal Trend decomposition using LOESS

Tuning Parameters


• s.window: the span (in lags) of the loess 
window used to estimate the seasonal 
component. Should be an odd number. 
Higher values result in smoother estimates.


• t.window: The span (in lags) of the loess 
window used to estimate the trend 
component. Should be an odd number. 
Higher values result in smoother estimates.
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Seasonal Adjusted Forecasts
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• STL is not a forecasting method. To produce a forecast 
we use the following decomposition:

yt = ̂St + ̂At
̂At = ̂Tt + R̂t

• Â is the seasonal adjusted component, i.e. the time series 
with the seasonality removed:



Seasonal Adjusted Forecasts
• To forecast a decomposed time series, we forecast the 

seasonal component and the seasonal adjusted 
component separately.


• Seasonal Component: Seasonality usually does not 
change much across periods. Typically a seasonal naive 
model is applied to the estimated seasonal component.


• Seasonal Adjusted Component: Any non-seasonal 
forecasting method may be used. Good choices are ETS 
or ARIMA models.
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Seasonal Adjusted Forecasts
library(forecast) 

> stlf(y, h = horizon, t.window = 13 s.window = 7, 
       method = ‘arima’, ic = ‘bic’) 

> stlf(y, h = horizon, t.window = 13 s.window = 7, 
       method = ‘ets', ic = ‘aic’, opt.crit = ‘mae’)

• method: How the seasonal adjusted component is modeled.


• ic: Information criterion. Both ARIMA and ETS have hyper-
paramters that need to be chosen. Selects the best model 
based on either AIC or BIC.


• opt.crit: Only for ETS. Optimization criterion used to estimate 
the model’s parameters.
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Seasonal Adjusted Forecasts
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De-noising Multiple Time Series
• Recall: We have T measurements on m time series, 

y(1), y(2),…, y(m) which are the columns of the matrix Y. 

• Idea: Y is a noisy version of some “ground truth” 
signal that is approximately low rank (once we remove 
the noise). Using a low rank approximation to Y might 
increase the signal to noise ratio.

• From a previous lecture we know that the top k 
principle components are the best rank k 
approximation of the original dataset.

• We can de-noise a collection of correlated time series 
by applying PCA to Y and choosing the top k PCs.
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De-noising Multiple Time Series
• An algorithm for PCA is to center and scale each 

feature and then run SVD. Let Y* denote the centered 
and scaled version of Y. 


• The de-noising algorithm is as follows:

Y* = UΣV

Ỹ = UkΣkVk

1. Compute the SVD decomposition of Y*

2. Use the truncated decomposition with only k 
components for modeling:
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De-noising Multiple Time Series

Rank 2 Approximation

Ỹ = U2Σ2V2

Rank 12 Approximation

Ỹ = U12Σ12V12
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Lagged Features
• Lagged Features: Use the past p values of the time 

series to predict the current value, e.g.


yt = ϕ0 + ϕ1yt−1 + ϕ2yt−2 + … + ϕpyt−p + ϵt

> y <- c(1, 2, 3) 
> cbind(y, lag(y, 1), lag(y, 2)) 

      y       
[1,] 1 NA NA 
[2,] 2  1 NA 
[3,] 3  2  1

• Seasonal Lagged Features: Include the value of the 
time series at the previous season, e.g. last 12 months.

• Note: ARIMA and ETS models build lags into the model. 
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Further Resources

• Forecasting: Principles and Practice by Rob J Hyndman and 
George Athanasopoulos. 

• Free online at https://otexts.org/fpp2/


• Winner’s code for the Walmart Challenge.

• https://github.com/davidthaler/Walmart_competition_code
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