
The Walmart Sales Project
• Goal: Forecast the weekly sales for 99 departments at 45

Walmart stores located in different regions.

• That is 4,455 different time series! However, notice that time
series within the same department have similar patterns:

Department 16Department 1

!1

What is a Time Series

Date y

2012 123

2013 39

2014 78

2015 110

y = (y1, y2, …, yT) = (123,39,78,110)

�2

Frequency of a Time Series

• Frequency: the number of observations before the
seasonal pattern repeats. In physics and engineering this
is the period.

Data Frequency

Annual 1

Quarterly 4

Monthly 12

Weekly 52

• Caveat: There are not 52 weeks in a year, but 365.25/7 =
52.18 on average.

!3

Working with Time Series

> y <- ts(c(123,39,78,110), start=2012, frequency=1)

Time Series:
Start = 1
End = 4
Frequency = 1
[1] 123 39 78 110

!4

• Load in R as a ts object

Working with Multiple Time Series
Notation

y(i) = (y(i)
1 , y(i)

2 , …, y(i)
T)T

Y =

y(1)
1 y(2)

1 … y(i)
1 … y(m)

1

y(1)
2 y(2)

2 … y(i)
2 … y(m)

2
⋮ ⋮ … ⋮ … ⋮

y(1)
t y(2)

t … y(i)
t … y(m)

t
⋮ ⋮ … ⋮ … ⋮

y(1)
T y(2)

T … y(i)
T … y(m)

T

• Assume we have m different times series of length T, e.g.
weekly time series per store (within a department). Form a
matrix Y containing each time-series as follows:

ith time series:

Value of each time series
at time t.

!5

Working with Multiple Time Series

!6

library(tidyverse)

> dept_tbl <- all_stores %>%
> filter(Dept == num_dept) %>%
> select('Date', 'Store', 'Weekly_Sales') %>%
> spread(Store, Weekly_Sales)

> store_one_ts <- ts(dept_tbl[, 2], frequency = 52)

A tibble: 143 x 46
 Date `1` `2` `3` `4` `5` `6` `7` `8` `9` `10` `11` `12` `13` `14`
 <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1 2010-02-05 10218. 9675. 3702. 7438. 4546. 11819. 2774. 2956. 3860. 25694. 5894. 4566. 3333. 10433.
 2 2010-02-12 11874. 9988. 4451. 8881. 6757. 11119. 4072. 4953. 3341. 24556. 6933. 3859. 4341 16731.
 3 2010-02-19 13856. 11496. 6473. 10693. 5245. 18669. 3734. 5912. 6438. 33322. 9789. 6936. 4882. 11945.
 4 2010-02-26 12881. 12558. 6322. 11943. 5150. 16651. 5188. 5946. 7241. 27774. 12764. 5895. 6392. 8287.
 5 2010-03-05 17130. 21957. 7769. 15409. 6922. 30437. 5025. 8506. 9652. 35228. 15792. 8287. 8843. 8047.
 6 2010-03-12 23767. 25827. 14296. 16169. 9407. 38650. 4289. 12776. 10164. 34864. 18317. 7352. 11771. 18217.
 7 2010-03-19 41742. 45311. 14103. 23152. 14971. 51103. 6680. 17947. 17654. 48984. 29762. 10249. 15575. 23750.
 8 2010-03-26 26680. 22084. 11458. 22741. 9350. 37527. 5238. 12889. 15085. 49448. 19302. 12934. 18668. 39182.
 9 2010-04-02 46061. 48042. 15256. 35582. 14933. 60800. 7798. 26715. 28892. 47481. 29953. 12760. 19276. 39508.
10 2010-04-09 52977. 58887. 17276. 38717. 15053. 56726. 6077. 34847. 23307. 53134. 30274. 13026. 18038. 61478.
... with 133 more rows, and 31 more variables: `15` <dbl>, `16` <dbl>, `17` <dbl>, `18` <dbl>, `19` <dbl>, …

• Recommendation: Loop over departments and construct the
matrix Y. You can then model column by column or try to
combine information across columns, i.e. stores.

Introduction to Forecasting
• Forecasting: the prediction of data at future times

using observations collected in the past.

• Forecast horizon: How many time steps in the future a
model will predict. I denote this value by h in the
example code.

!7

Time Series Patterns

• Trend: A long-term increase or decrease in the data.
Does not have to be linear!

• Seasonal: When a time series is affected by seasonal
factors such as the time of the year or day of the week.
Seasonality is always of a fixed and known frequency.

• Cyclic: When a time series exhibits rises and falls that
are not of a fixed frequency.

• Random: Everything else after the Trend/Seasonal/
Cyclic nature of the times series is removed.

!8

Time Series Patterns

!9

Department 16Department 1

Time Series Patterns

How to Evaluate a Forecast
• K-fold cross-validation does not work. Why?

• Instead use training sets that occur prior to the test data.

Training sets are grown until they contain all of the data.

• This respects the dependency structure of the time

series.

!11

Baseline Forecasting Methods

̂yT+h|T = yT

Naive
• Predict all future forecasts to be the value of the last

observation:

̂yT+h|T = yT+h−m(k+1)

library(forecast)
> naive(y, h)

library(forecast)
> snaive(y, h)

Seasonal Naive
• Predict all future forecasts to be equal to the last

observed value from the same season of the year
(e.g. the same week of the previous year)

!12

Baseline Forecasting Methods

!13

Time Series Regression Models

• Through clever feature engineering many
machine learning models can learn time series
patterns.

• How do we model Trend?

• How do we model Seasonality?

!14

Time Series Regression Models
Modeling Trend

• Include t = 1, … , T as a predictor to the

model. For linear regression:

yt = β0 + β1t + ϵt

library(forecast)
> f_tslm <- tslm(y ~ trend)
> forecast(f_tslm, h)

• Can include higher order terms (t2, t3, …) to
model non-linear trends.

• Caveat: Does not work for tree based methods.
Why?

!15

Time Series Regression Models
Modeling Seasonality

• Include seasonal dummy variables, e.g. for

quarterly data the categorical variable has four
levels. One for each quarter.

yt = β0 + β1d1,t + β2d2,t + β3d3,t + ϵt

Trend + Seasonality

• Of course you can use both:

library(forecast)
> f_tslm <- tslm(y ~ season)
> forecast(f_tslm, h)

yt = β0 + β1t + β2d1,t + β3d2,t + β4d3,t + ϵt
library(forecast)
> f_tslm <- tslm(y ~ trend + season)
> forecast(f_tslm, h)

!16

Time Series Regression Models

!17

Time Series Regression Models
Harmonic Regression (Fourier Terms) for Seasonality

• Use Fourier terms as features. Alternative to seasonal

dummy variables. Useful if there are too many categories.
If m is the seasonal period, then the predictors are:

x1,t = sin (2πt
m), x2,t = cos (2πt

m) x3,t = sin (4πt
m), x4,t = cos (4πt

m), …

library(forecast)

> f_tslm <- tslm(y ~ trend + fourier(y, K = 4))
> forecast(f_tslm, newdata = fourier(y, K = 4, h))

• What happens when we have m/2 terms?

!18

Time Series Regression Models

!19

Time Series Decomposition
• Idea: Use smoothing functions (splines, local regression) to

decompose a time series into a Seasonal, Trend, and
Random component.

yt = f(St, Tt, Rt) = St + Tt + Rt

!20

• Note: Sometimes the decomposition is multiplicative, e.g.
magnitude of seasonality or variation in the series increases
with the trend. In this case take a log transform of y.

Time Series Decomposition

yt = St × Tt × Rt ⟹ log(yt) = log(St) + log(Tt) + log(Rt)

• Decompositions in-between multiplicative and additive
can be modeled by applying a Box-Cox transformation.

!21

STL: Seasonal Trend decomposition using LOESS

̂St
k

Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. J. (1990). STL: A seasonal-trend
decomposition procedure based on loess. Journal of Official Statistics, 6(1), 3–73. http://www.jos.nu/
Articles/abstract.asp?article=613

!22

http://www.jos.nu/Articles/abstract.asp?article=613
http://www.jos.nu/Articles/abstract.asp?article=613

STL: Seasonal Trend decomposition using LOESS

library(forecast)
library(fpp2)

stl(fpp2::elecequip, t.window=13, s.window=7)

!23

STL: Seasonal Trend decomposition using LOESS

Tuning Parameters

• s.window: the span (in lags) of the loess
window used to estimate the seasonal
component. Should be an odd number.
Higher values result in smoother estimates.

• t.window: The span (in lags) of the loess
window used to estimate the trend
component. Should be an odd number.
Higher values result in smoother estimates.

!24

Seasonal Adjusted Forecasts

!25

• STL is not a forecasting method. To produce a forecast
we use the following decomposition:

yt = ̂St + ̂At
̂At = ̂Tt + R̂t

• Â is the seasonal adjusted component, i.e. the time series
with the seasonality removed:

Seasonal Adjusted Forecasts
• To forecast a decomposed time series, we forecast the

seasonal component and the seasonal adjusted
component separately.

• Seasonal Component: Seasonality usually does not
change much across periods. Typically a seasonal naive
model is applied to the estimated seasonal component.

• Seasonal Adjusted Component: Any non-seasonal
forecasting method may be used. Good choices are ETS
or ARIMA models.

!26

Seasonal Adjusted Forecasts
library(forecast)

> stlf(y, h = horizon, t.window = 13 s.window = 7,
 method = ‘arima’, ic = ‘bic’)

> stlf(y, h = horizon, t.window = 13 s.window = 7,
 method = ‘ets', ic = ‘aic’, opt.crit = ‘mae’)

• method: How the seasonal adjusted component is modeled.

• ic: Information criterion. Both ARIMA and ETS have hyper-
paramters that need to be chosen. Selects the best model
based on either AIC or BIC.

• opt.crit: Only for ETS. Optimization criterion used to estimate
the model’s parameters.

!27

Seasonal Adjusted Forecasts

!28

De-noising Multiple Time Series
• Recall: We have T measurements on m time series,

y(1), y(2),…, y(m) which are the columns of the matrix Y.

• Idea: Y is a noisy version of some “ground truth”
signal that is approximately low rank (once we remove
the noise). Using a low rank approximation to Y might
increase the signal to noise ratio.

• From a previous lecture we know that the top k
principle components are the best rank k
approximation of the original dataset.

• We can de-noise a collection of correlated time series
by applying PCA to Y and choosing the top k PCs.

!29

De-noising Multiple Time Series
• An algorithm for PCA is to center and scale each

feature and then run SVD. Let Y* denote the centered
and scaled version of Y.

• The de-noising algorithm is as follows:

Y* = UΣV

Ỹ = UkΣkVk

1. Compute the SVD decomposition of Y*

2. Use the truncated decomposition with only k
components for modeling:

!30

De-noising Multiple Time Series

Rank 2 Approximation

Ỹ = U2Σ2V2

Rank 12 Approximation

Ỹ = U12Σ12V12

!31

Lagged Features
• Lagged Features: Use the past p values of the time

series to predict the current value, e.g.

yt = ϕ0 + ϕ1yt−1 + ϕ2yt−2 + … + ϕpyt−p + ϵt

> y <- c(1, 2, 3)
> cbind(y, lag(y, 1), lag(y, 2))

 y
[1,] 1 NA NA
[2,] 2 1 NA
[3,] 3 2 1

• Seasonal Lagged Features: Include the value of the
time series at the previous season, e.g. last 12 months.

• Note: ARIMA and ETS models build lags into the model.

!32

Further Resources

• Forecasting: Principles and Practice by Rob J Hyndman and
George Athanasopoulos.

• Free online at https://otexts.org/fpp2/

• Winner’s code for the Walmart Challenge.

• https://github.com/davidthaler/Walmart_competition_code

!33

https://otexts.org/fpp2/

